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Abstract. In this paper, we show taht for any proper statistically convex-

cocompact actions on proper metric spaces, the sublinearly Morse boundary
has full Patterson-Sullivan measure in the horofundction boundary, .
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1. Introduction

Suppose that a group G admits a proper and isometric action on a proper geo-
desic metric space (X, d). The group G is assumed to be non-elementary : there is
no finite index subgroup isomorphic to the integer group Z or the trivial group.

The contracting property captures a key feature of quasi-geodesics in Gromov
hyperbolic spaces, rank-1 geodesics in CAT(0) spaces, thick geodesics in Teichmüller
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spaces, and many others. In recent years, this notion and its variants have been
proven fruitful in the study of general metric spaces.

Let A be a closed subset of X, and πA ∶ X → A be the nearest-point projection
map. We say that A is C–contracting for C ≥ 0 if

diam(πA(B)) ≤ C
for any metric ball B disjoint from A. An element of infinite order is called con-
tracting, if it acts by translation on a contracting quasi-geodesic.

Contracting boundary for CAT(0) spaces was introduced by Charney-Sultan [2]
as quasi-isometric invariant, and has attracted active research interests in recent
years ([3, 13]). It is observed that the contracting boundary is measurably neg-
ligible in harmonic measures and conformal measures. The underlying set of the
contracting boundary consists of the endpoints of contracting geodesic rays in the
visual boundary.

On the other hand, Qing and Rafi [13] showed that a much larger class of sublin-
early Morse geodesics equipped with an appropriate topology (called the sublinearly
Morse boundary ∂κX) is still quasi-isometrically invariant. See Definition 2.13. It
is of interest to demonstrate that the sublinearly Morse boundary is indeed larger
than its QI-invariant predecessors. In [7], the authors showed that a subset of the
sublinearly Morse directions that is regularly contracting (see Definition 2.16) is
generic in the Patterson-Sullivan measure on visual boundary of CAT(0) spaces
under some conditions, and on the Thurston boundary of Teichmüller spaces.

The motivation of this paper is to extend the result of [7] to the conformal
measure on horofunction boundary of any proper metric space. Recently, a general
theory of a conformal density has been developed by Coulon and the second-named
author independently in [4, 21] on horofunction boundary in presence of contracting
elements. A key tool in this generalization is assuming that the given G ↷ X is
a proper, statistically convex-cocompact (SCC) action, introduced by the second-
named author in [18], with a contracting element. Except the negatively curved
examples which lies out of the interests of this paper, we mention:

● CAT(0)-groups, including right-angled Coxeter/Artin groups, act geomet-
rically on CAT(0) spaces with rank-1 elements.
● Mapping class groups act on Teichmüller space endowed with Teichmüller
metric.

Using different and more geometrically flavored tool, we show that sublinearly
Morse directions form a full measure set with respect to conformal measures on
horofunction boundary.

Let ∂hX be the horofunction boundary. Every sublinearly Morse equivalent class
[γ] in ∂κX contains a representative of geodesic ray γ, defining a horofunction γ+

in ∂X. By abuse of language, we also call the set of images {γ+ ∈ ∂hX ∶ [γ] ∈ ∂κX}
sublinearly Morse directions in ∂hX

1. Our main result says that such directions
form a generic set with respect to conformal measures.

Theorem A (Theorem 4.1). Let G ↷ X be a proper, non-elementary SCC action
on a proper geodesic metric space X with a contracting element. Let µo be the ωG–
dimensional conformal density on the horofunction boundary ∂hX. Then the set of
sublinearly Morse directions is a µo–full measure subset.

1We do not claim here the assignment [γ] → γ+ is well-defined, up to finite difference or

sublinear difference.
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If X is a proper CAT(0) space, then there is a unique geodesic ray representative,
so gives an injective map from sublinearly Morse boundary ∂κX into the visual
boundary (homeomorphic to ∂hX). We thus obtain the following result. This
removes some technical assumption (e.g. geodesically complete) on X in the recent
result of [7, Theorem 1.1], which is required to apply the results of Ricks [15].

Theorem B. Let G ↷ X be a proper, non-elementary SCC action on a proper
CAT(0) space X with a rank-1 element. Let µo be the ωG–dimensional conformal
density on the the visual boundary ∂hX. Then the set of sublinearly Morse directions
is µo–full measure.

At last, let us emphasize that Theorem A holds for any convergence boundary
including Thurston boundary of Teichmüller spaces. In particular, this gives a
different proof of this result in [7]. We refer the reader to Theorem 4.1 for the
precise statement.

Historic background and related works. In his celebrated proof of now called
Mostow rigidity theorem, G. Mostow carried out a two-step strategy as follows:

(1) Quasi-isometry induces an homeomorphisms called boundary map between
visual boundaries,

(2) Proving the boundary map that is quasi-conformal is actually conformal
by using ergodicity of geodesic flows. Absence in dimension 2, the non-
singularity of this map sending a positive Lebesgue measure to the target
turns out to be a remarkable feature in this approach.

Sought for a quasi-isometric invariant boundary has been an active research topic,
from a perspective of quasi-isometric classification in geometric group theory. The
famous counter-example of Croke-Kleiner [5] on the visual boundary of CAT(0)
spaces generates the interests to the subclass of hyperbolic-like directions as the
quasi-isometric invariant boundary, as shown in the fore-mentioned works of Charney-
Sultan [2] and Qing-Rafi-Tiozzo [14].

Stimulated by Step 2, it is natural to ask whether the Q.I. invariant boundary
under construction is generic in a measure of interest. Lebesgue measure on the
visual boundary of rank-1 symmetric spaces is an important instance of conformal
measures considered in this paper. First construction of such measures appeared
in the seminal work of Patterson [11] and has been further developed by Sullivan,
setting the track for fruitful research in last several decades. Recently, the theory
of conformal density on the horofunction boundary is generalized to groups with
contracting element independently by Coulon [4] and by the second-named author
in [21]. This is the main setup of the paper. We refer the reader to these papers
and references therein for a detailed discussion.

Statistically convex-cocompact actions of groups has received wide attention in
the last few years. The concept was introduced in [18] to generalize the idea of
convex-cocompact subgroups in Kleinian groups to non-hyperbolic settings. In-
dependently, SCC actions were also introduced by Schapira-Tapie [16] under the
terminoledge of strongly positively recurrent actions (or manifolds) in dynamical
system. The class of SCC actions encompasses many examples, but forms a strict
subclass of actions with purely exponential growth. In many circumstances, the
latter is equivalent to the so-called positively recurrent actions in [12].

Another measure of interest is harmonic measure arising from random walk on
Poisson boundary. Recently Qing-Rafi-Tiozzo [14] showed that, when κ = log t,
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the κ-boundary of the Cayley graph of the mapping class group can be identified
with the Poisson boundary of the associated random walks. More general results
concerning stationary measures were recently announced by Inhyeok Choi, who in
place of our ergodic theoretic and boundary techniques uses a pivoting technique
developed by Gouëzel. It will be interesting to understand that under suitable
conditions and restricted to the correcting compacitifcation, whether the sublinearly
Morse directions that supports the hitting measure and the ones that supports the
Patterson-Sullivan measures are singular or equivalent to each other.

Let us close the introduction by mentioning the following conjecture of Sullivan:

Conjecture 1.1. Suppose that a discrete action G ↷ Hn is of divergence type.
Let µo be the corresponding Patterson-Sullivan measure supported on ∂Hn. Then
the following set of boundary points ξ ∈ ∂Hn for which the geodesic ray γ = [o, ξ]
satisfies

lim
t→∞

d(γ(t),Go)
t

= 0
is generic.

This was confirmed by Sullivan if the Bowen-Margulis measure on geodesic flow
is finite. It follows by definition that this limit tends to 0 along regularly contract-
ing rays, so the genericty of regularly contracting rays implies the conjecture. Note
that if the action is of divergence type, then µo is supported on conical limit points
of G. The conjecture then predicts it is further supported on the “sublinear” limit
points (without assuming SCC action or finiteness of BMS measures etc). There-
fore, if a variant of Sullivan’s conjecture holds for regularly contracting rays, then
Theorem A would be valid under a proper action of divergence type.

Organization of the paper. We present relevant background in Section 2. Sec-
tion 3 collects all tools from the recently developed conformal density theory on
convergence boundary. Section 4 is devoted to the proof of Theorem Theorem A.

2. Preliminary

2.1. Notations. Let (X, d) be a proper geodesic metric space. Let A be a closed
subset of X and x be a point in X. By d(x,A) we mean the set-distance between
x and A, i.e.

d(x,A) ∶= inf {d(x, y) ∶ y ∈ A}.
Let

πA(x) ∶= {y ∈ A ∶ d(x, y) = d(x,A)}
be the set of nearest-point projections from x to A. Since X is a proper metric
space, πA(x) is non empty. We refer to πA(x) as the projection set of x to A.
Define

dA(x, y) = diam(πA(x) ∪ πA(y)).
If a set A is countable then we use ♯A to denote the number of elements in A.

Let α ∶ [a, b] → X be a path with arc-length parametrization from the initial
point α− = α(a) to the terminal point α+ = α(b). If x = α(s) and y = α(t) are
two points on α, [x, y]α denotes the parametrized subpath of α going from x to y,
that is, the restriction of α: [s, t] → X. We also write α[s, t] simply to denote the
segment restricting on the interval [s, t]. Let [x, y] denote a geodesic segment (not
necessarily unique) between x, y ∈ X.
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If β is a geodesic ray emanating from the base-point, then β∣r denote the point
on β that is distance r from o.

A continuous path α is called a (q,Q)–quasi-geodesic for constants q ≥ 1, Q > 0
if for any rectifiable subpath β,

ℓ(β) ≤ q ⋅ d(β−, β+) +Q
where ℓ(β) denotes the length of β. Equivalently, if α ∶ [a, b] ⊆ R→ X is parametrized
with arclength parametrization, for any s, t ∈ [a, b], we have

∣s − t∣
q
−Q ≤ d(α(s), α(t)) ≤ q ∣s − t∣ +Q.

The additional assumption that quasi-geodesics are continuous is not necessary,
but it is added for convenience and to make the exposition simpler. When X is a
geodesic metric space, one can always adjust a quasi-geodesic ray slightly to make
it continuous (see [1, Lemma III.1.11]).

Denote by α ⋅β (or simply αβ) the concatenation of two paths α,β provided that
α+ = β−.

We say that a subset A is r–close to B if A is contained in the r–neighborhood
of B.

Let f, g be real-valued functions. Then f ≺ci g means that there is a constant
C > 0 depending on parameters ci such that f < Cg. The symbol ≻ci is defined
similarly, and ≍ci means both ≺ci and ≻ci are true. The constant ci will be omitted
if it is a universal constant.

2.2. Contracting subsets.

Definition 2.1 (Contracting subset). For given C ≥ 1, a subset U in X is called
C–contracting if for any geodesic γ with d(γ,U) ≥ C, we have

diam(πU(γ)) ≤ C.
A collection of C–contracting subsets is referred to as a C–contracting system.

A subset U ⊆ X is called quasi-convex if for a function σ ∶ R+ → R+: given
(q,Q) ≥ (1,0), any (q,Q)–quasi-geodesic with endpoints in U lies in Nσ((q,Q))(U).
Lemma 2.2. Let U be a C-contracting subset. Then

(1) There exists σ = σ(C) such that U is σ–quasi-convex.

(2) For any r > 0, there exists Ĉ = Ĉ(C, r) such that a subset V ⊆ X having

Hausdorff distance at most r to U is Ĉ–contracting.
(3) For any λ ≥ 1,Q ≥ 0, there exists Ĉ = Ĉ(λ,Q,C) so that any subpath of a

(λ,Q)–quasi-geodesic U is Ĉ–contracting.

(4) There exists Ĉ = Ĉ(C) such that dU(y, z) ≤ d(y, z) + Ĉ for any y, z ∈ X.

Proof. The assertion (3) is proved in [19, Prop 2.2.3]. □

In this paper, we are interested in a contracting system F with τ–bounded in-
tersection property for a function τ ∶ R≥0 → R≥0 if the following holds

∀U,V ∈F ∶ diam(Nr(U) ∩Nr(V )) ≤ τ(r)
for any r ≥ 0. This is, in fact, equivalent to a bounded projection property of F :
there exists a constant B > 0 such that the following holds

diam(πU(V )) ≤ B
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for any U ≠ V ∈F . See [20, Lemma 2.3].
An infinite order element h ∈ G is called contracting if the subgroup ⟨h⟩ acts

by translation on a contracting quasi-geodesic. The set of contracting elements is
preserved under conjugacy.

Lemma 2.3. [18, Lemma 2.11] Let h ∈ G be a contracting element. Then it is
contained in the following unique maximal elementary subgroup

E(h) = {g ∈ G ∶ ∃n ∈ N>0, ( ghng−1 = hn) ∨ (ghng−1 = h−n)}.

Keeping in mind the basepoint o ∈ X, the axis of h is defined as the following
quasi-geodesic

(1) Ax(h) = {fo ∶ f ∈ E(h)}.

Notice that Ax(h) = Ax(k) and E(h) = E(k) for any contracting element k ∈ E(h).

2.3. Horofunction boundary. We recall the construction of horofunction bound-
ary, which are endowed with the so-called finite and sublinear difference partitions.

Fix a basepoint o ∈ X. For each y ∈ X, we define a Lipschitz map by ∶ X→ X by

∀x ∈ X ∶ by(x) = d(x, y) − d(o, y).

This family of 1–Lipschitz functions sits in the set of continuous functions on X van-
ishing at o. Endowed with the compact-open topology, the Arzela-Ascoli Lemma
implies that the closure of {by ∶ y ∈ X} gives a compactification of X. The comple-
ment, denote by ∂hX, of X is called the horofunction boundary.

A Buseman cocycle Bξ ∶ X ×X→ R (independent of o) is given by

∀x1, x2 ∈ X ∶ Bξ(x1, x2) = bξ(x1) − bξ(x2).

The topological type of horofunction boundary is independent of the choice of
basepoints. Every isometry ϕ of X induces a homeomorphism on X:

∀y ∈ X ∶ ϕ(ξ)(y) ∶= bξ(ϕ−1(y)) − bξ(ϕ−1(o)).

According to the context, both ξ and bξ are used to denote the boundary points.

Finite difference relation. Two horofunctions bξ, bη have K–finite difference for
K ≥ 0 if the L∞–norm of their difference is K–bounded:

∥bξ − bη∥∞ ≤K.

The locus of bξ consists of horofunctions bη so that bξ, bη have K–finite difference
for some K depending on η. The loci [bξ] of horofunctions bξ form a finite difference
equivalence relation [⋅] on ∂hX. The locus [Λ] of a subset Λ ⊆ ∂hX is the union of
loci of all points in Λ. We say that Λ is saturated if [Λ] = Λ.

Say that a sequence of subsets Xn is escaping if d(o,Xn) →∞. We summarize
the following properties of horofunction boundary in [21, Sec. 5], which are called
the convergence property of the horofunction boundary.
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Sublinear difference relation. It will be also useful to consider another bigger re-
lation than the finite difference relation. We say two horofunctions bξ, bη ∶ [0,∞)→
X have sublinear difference if

(2) lim
n→∞

sup
d(o,x)≥n

∣bξ(x) − bη(x)∣
d(o, x) = 0.

Since two horofunction representatives of a given point ξ ∈ ∂X differ by a constant
for different basepoints, this relation is independent on the choice of basepoint.
The sublinear difference relation is an equivalence relation. We denote by [ξ]s the
equivalent class of ξ ∈ ∂X, and [∂hX]s the resulting quotient space of ∂hX. It is
clear that [ξ] ⊆ [ξ]s, so [∂hX] is also quotient of [∂hX]s. In particular, Theorem
2.15 holds for sublinear equivalence relation as well, where [⋅] could be replaced
with [⋅]s.

Any geodesic ray α tends to a unique point, denoted by α+, at the horofunction
boundary ∂hX. Namely, the associated horofunction is as follows

α+(x) ∶= lim
t→∞
[d(α(t), x) − t]

Lemma 2.4. Let α,β ∶ [0,∞) → X be two geodesic ways issuing from the same
base-point o ∈ X, ending at α+, β+ ∈ ∂hX respectively. If there are two sequences of
real numbers sn, rn →∞ satisfying

lim sup
n→∞

rn/sn < 1(3)

∀n≫ 0, lim sup
t→∞

d(o, [α(sn), β(t)]) ≤ rn(4)

then [α+]s ≠ [β+]s.
Proof. Let xn = α(sn) ∈ α so we have α+(xn) = −sn. We are going to prove that xn

violates (2). For small enough ϵ > 0, according to (4), there are tm →∞ so that

d(o, [α(sn), β(tm)]) ≤ rn + ϵ
so by triangle inequality,

∣d(α(sn), β(tm)) − sn − tm∣ ≤ 2(rn + ϵ)
Thus, letting sn →∞ and ϵ→ 0,

lim sup
sn→∞

∣β+(xn) − α+(xn)∣
sn

= lim sup
sn→∞

∣β+(xn) + sn∣
sn

= ∣ limtm→∞[d(β(tm), xn) − tm − sn] + 2sn∣
sn

> 0

where the last inequality uses (3). Hence, [α+]s ≠ [β+]s follows by definition. □

Lemma 2.5. Let α,β be two geodesic rays ending at [α+] ≠ [β+] respectively.
Assume that α contains infinitely many disjoint C–contracting segments of length
L in its r–neighborhood. If L≫ 0, then [α+]s ≠ [β+]s.
Proof. Pick up two unbounded sequences of xn ∈ α and yn ∈ β. By assumption,
α contains infinitely many C–contracting segments pm of length L. By the C–
contracting property of pm, if [xn, yn] ∩NC(pm) = ∅ for infinitely many pm, then
β ∩NC(pm) ≠ ∅. As pm is escaping, this implies the intersection of α and Nr+C(β)
is unbounded. By definition of horofunctions, [α+] = [β+] are in the same finite
difference class, contradicting the assumption. Consequently, there must exist some
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pm so that [xn, yn] ∩NC(pm) ≠ ∅. Again the C–contracting property of pm shows
[xn, yn] intersects NC(pm) as n → ∞. Setting D = d(o, pm) + r + C, we obtain
d(o, [xn, yn]) ≤ D, where D is independent of n. It thus follows from Lemma 2.4
that [ξ]s ≠ [η]s. The proof is complete. □

For hyperbolic spaces, the sublinear and finite difference relation turns out to be
the same on ∂hX.

Corollary 2.6. If X is a Gromov hyperbolic geodesic space, then [∂hX]s is home-
omorphic to the Gromov boundary ∂X.

Proof. Any geodesic ray in a hyperbolic space is uniformly contracting. The con-
clusions follows immediately from Lemma 2.5. □

2.4. Sublinearly Morse boundaries. Now we introduce a large class of quasi-
geodesic rays that are quasi-isometry invariant. Intuitively, these quasi-geodesics
have a weak Morse-like property. To begin with, we fix a function that is sublinear
in the following sense:

Sublinear functions. We fix a function

κ∶ [0,∞)→ [1,∞)

that is monotone increasing, concave and sublinear, that is

lim
t→∞

κ(t)
t
= 0.

Note that using concavity, for any a > 1, we have

(5) κ(at) ≤ a(1
a
κ(at) + (1 − 1

a
)κ(0)) ≤ aκ(t).

We say a quantity D is small compared to a radius r > 0 if

(6) D ≤ r

2κ(r) .

Remark. The assumption that κ is increasing and concave makes certain arguments
cleaner, otherwise they are not really needed. One can always replace any sublinear
function κ, with another sublinear function κ so that κ(t) ≤ κ(t) ≤ Cκ(t) for some
constant C and κ is monotone increasing and concave. For example, define

κ(t) = sup{λκ(u) + (1 − λ)κ(v) ∣ 0 ≤ λ ≤ 1, u, v > 0, and λu + (1 − λ)v = t}.

The requirement κ(t) ≥ 1 is there to remove additive errors in the definition of
κ–contracting geodesics.

Definition 2.7 (κ–neighborhood). Recall that, for x ∈ X, we have ∥x∥ = d(o, x).
To simplify notation, we often drop ∥ ∥. That is, for x ∈X, we define

κ(x) ∶= κ(∥x∥).

For a closed set Z and a constant n, define the (κ,n)–neighbourhood of Z to be

Nκ(Z,n) = {x ∈ X ∣ d(x,Z) ≤ n ⋅ κ(x)}.
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o τ

x

xb

n ⋅ κ(x)
∥x∥

(κ,n)–neighbourhood of τ

Figure 1. A κ–neighbourhood of a geodesic ray τ with multi-
plicative constant n.

In this paper, Z is either a geodesic or a quasi-geodesic. That is, we can write
Nκ(τ,n) to mean the (κ,n)–neighborhood of the image of the geodesic ray τ . Or,
we can use phrases like “the quasi-geodesic β is κ–contracting” or “the geodesic τ
is in a (κ,n)–neighbourhood of the geodesic c”.

We recall the definition of κ–contracting and κ–Morse sets from [14].

Definition 2.8 (κ–Morse I). We say a closed subset Z of X is κ–Morse if there is
a function

mZ ∶ R2
+ → R+

so that if β∶ [s, t]→ X is a (q,Q)–quasi-geodesic with end points on Z then

β[s, t] ⊆ Nκ(Z,mZ(q,Q)).
We refer to mZ as a Morse gauge for Z. Without loss of generality one can assume

(7) mZ(q,Q) ≥max(q,Q).

Definition 2.9 (κ–Morse II). We say a closed subset Z of X is κ–Morse II if
there is a function mZ ∶ R2 → R such that, for every constants r > 0, n > 0 and every
sublinear function κ′, there is an R = R(Z, r,n, κ′) > 0 where the following holds: Let
η∶ [0,∞)→ X be a (q,Q)–quasi-geodesic ray so that mZ(q,Q) is small compared to
r, let tr be the first time ∥η(tr)∥ = r and let tR be the first time ∥η(tR)∥ = R. Then

d(η(tR), Z) ≤ n ⋅ κ′(R) Ô⇒ η[0, tr] ⊆ Nκ(Z,mZ(q,Q)).

It is also natural to generalize the notion of contracting to the sublinear setting:

Definition 2.10 (κ–contracting). For a closed subspace Z of X, we say Z is κ–
contracting if there is a constant cZ so that, for every x, y ∈ X

d(x, y) ≤ d(x,Z) Ô⇒ dZ(x, y) ≤ cZ ⋅ κ(x).

o

Figure 2. A sublinearly contracting geodesic ray

The following theorem summarizes the relation of the above three notions.
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Theorem 2.11 ([14]). Let X be a proper geodesic metric space and let τ be a
quasi-geodesic ray in X. Then

(1) τ is κ–Morse I if and only if τ is κ–Morse II. Thus we say a set is kappa-
Morse if it is either κ–Morse I or κ–Morse II.

(2) If τ is κ–contracting then τ is κ–Morse.
(3) If τ is κ-Morse then it is κ′-contracting.

Analogous to Lemma 2.3 (2), κ–Morse is a property than can also be established
by approximity. That is to say, if a quasi-geodesic ray α sublinearly fellow travel a
κ–Morse ray β, then α is also κ–Morse. We now make this precise. First assume
without loss of generality that a quasi-geodesic ray is a continuous path. Define

αr ∶= {α(t0) ∣α(t0) ∈ (α ∩X/B(o, r)), and for any other

α(t) ∈ α ∩X/B(o, r), we have t0 ≤ t}

We say two quasi-geodesic rays sublinearly fellow travel if

lim
r→∞

d(αr, βr)
r

= 0.

Theorem 2.12. [14] Let α be a (q1,Q2)–quasi-geodesic ray and let β be a (q2,Q2)–
quasi-geodesic ray that is κ–Morse. If α and β sublinearly fellow travel, then there
exists a κ–neighborhood depending only on (q1,Q1) and (q2,Q2) such that

α ∈ Nκ(β,m((q1,Q1), (q2,Q2))).
Furthermore, α is a κ–Morse ray.

Lastly, a quasi-geodesic is called sublinearly Morse if it is κ–Morse for some
sublinearly growing function κ.

Definition 2.13 (Sublinearly Morse boundary). Given a sublinear function κ, let
∂κX denote the set of equivalence classes of κ–Morse quasi-geodesics. Equipped
with a coarse version of cone topology, we call this set the κ–Morse boundary of X
and denote it ∂κX (for more details, see [14]).

It is shown in [14] that X ∪ ∂κX with the coarse cone topology is a QI-invariant
space and a metrizable topological space.

2.5. Convergence boundary. In this subsection, we discuss an axiomatic ap-
proach introduced in [21] to the boundary of proper geodesic metric spaces in
presence of contracting subsets. The motivating examples are Gromov boundary of
hyperbolic spaces and visual boundary of CAT(0) spaces. Before describing more
examples in 2.5, we need to introduce a few terminologies.

Let (X, d) be a proper metric space admitting an isometric action of a non-
elementary countable group Γ with a contracting element. Consider a metrizable
compactification X ∶= ∂X ∪X, so that X is open and dense in X. We also assume
that the action of Isom(X) extends by homeomorphism to ∂X.

We equip ∂X with a Isom(X)–invariant partition [⋅]: [ξ] = [η] implies [gξ] = [gη]
for any g ∈ Isom(X). The locus [Z] of a subset Z ⊆ ∂X is the union of all [⋅]–classes
of ξ ∈ Z. We say that ξ is minimal if [ξ] = {ξ}, and a subset U is [⋅]–saturated if
U = [U].

We say that [⋅] restricts to be a closed partition on a [⋅]–saturated subset U ⊆ ∂X
if xn ∈ U → ξ ∈ ∂X and yn ∈ U → η ∈ ∂X are two sequences with [xn] = [yn], then
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πγ(yn)

yn

[ξ]
o γ1

[ξ]
γn

y1 ∈ Ωo(γ1)

yn ∈ Ωo(γn)

o

o

xn

yn

[ξ] ⊆ C Ô⇒ d(o, [xn, yn])→∞

(A) (B)

(C)

Figure 3. Illustrate Assumptions (A)(B)(C) in Definition 2.14

[ξ] = [η]. (Possibly ξ, η are not in U anymore.) If U = ∂X, this is equivalent to say
that the relation {(ξ, η) ∶ [ξ] = [η]} is a closed subset in ∂X × ∂X, so the quotient
space [∂X] is Hausdorff. In general, [⋅] may be not closed over the whole ∂X (say
the horofunction boundary with finite difference relation), but is closed on certain
interesting subsets as requested in Assumption (C) below.

With respect to the given partition, we say that a sequence of points xn tend
(resp. accumulates) to [ξ] if the limit point (resp. any accumulate point) is con-
tained in [ξ]. This implies that [xn] tends or accumulates to [ξ] in the quotient
space [∂X]. So, an infinite ray γ terminates at a point in [ξ] ∈ ∂X if any sequence
of points on γ accumulates in [ξ].

Recall that Ωo(A) = {x ∈ X ∶ [o, x] ∩A ≠ ∅} is the cone of a subset A ⊆ X with
light source at o. A sequence of subsets An is called escaping if d(o,An) → ∞ for
some (or any) o ∈ X.

Definition 2.14. We say that (X, [⋅]) is a convergence compactification if the
following assumptions hold.

(A) Any contracting geodesic ray γ accumulates into a closed subset [ξ] for
some ξ ∈ ∂X such that any sequence of yn ∈ X with escaping projections
πγ(yn) tends to [ξ].

(B) Let {γn ⊆ X ∶ n ≥ 1} be an escaping sequence of C–contracting quasi-
geodesics for some C > 0. Then for any given o ∈ X, there exist a subse-
quence of {An ∶= Ωo(γn) ∶ n ≥ 1} (still denoted by An) and ξ ∈ ∂X such that
An accumulates into [ξ]:

Any convergent sequence of points xn ∈ An tends to a point in [ξ].
(C) The set C of non-pinched points ξ ∈ ∂X is non-empty. If xn, yn ∈ X are two

sequence of points converging to [ξ], then [xn, yn] is an escaping sequence
of geodesic segments.

Examples. The first three convergence boundaries are equipped with a maximal
partition [⋅] (i.e. each [⋅]-class is singleton). See [21] for more details.
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(1) Hyperbolic space X with Gromov boundary ∂X, where all boundary points
are non-pinched.

(2) CAT(0) space X with visual boundary ∂X (homeomorphic to horofunction
boundary), where all boundary points are non-pinched.

(3) The Cayley graph X of a relatively hyperbolic group with Bowditch or
Floyd boundary ∂X, where conical limit points are non-pinched.

If X is infinitely ended, we could also take ∂X as the end boundary with
the same statement.

(4) Teichmüller space X with Thurston boundary ∂X, where [⋅] is given by
Kaimanovich-Masur partition [9] and uniquely ergodic points are non-pinched.

(5) Any proper metric space X with horofunction boundary ∂X, where [⋅] is
given by finite difference partition and all boundary points are non-pinched.
If X is the cubical CAT(0) space, the horofunction boundary is exactly the
Roller boundary. If X is the Teichmüller space with Teichmüller metric,
the horofunction boundary is the Gardiner-Masur boundary ([10, 17]).

From these examples, we see that the convergence boundary is not unique for a
fixed proper metric space. In applications, the horofunction boundary provides a
non-trivial convergence boundary for any proper action.

Theorem 2.15. [21, Theorem 1.1] The horofunction boundary is a convergence
boundary with finite difference relation [⋅], where all boundary points are non-
pinched.

As finite difference partition is finer than the sublinear difference partition, we
see by definition that the above conclusion holds for sublinear difference partition
as well.

2.6. Regularly contracting geodesic rays. The notion of the regularly con-
tracting segment introduced in [7] shall be recalled in the subsection. This is a
metric notion without involving any group action.

For any θ ∈ [0,1], if γ is a geodesic, a θ–segment means a connected and open
subsegment of γ with length θℓ(γ).

Definition 2.16. Fix r,C > 0.
(1) Given L > 0, θ ∈ (0,1], we say that a geodesic γ is (r,C,L)–contracting

at θ–frequency if every θ–segment of γ contains a subsegment of length
L that is r–close to a C–contracting geodesic. That is to say, for any
0 < t < (1 − θ)ℓ(γ) there is an interval of time [s − L, s + L] ⊂ [t, t + θℓ(γ)]
and a C–contracting geodesic p such that,

(8) u ∈ [s −L, s +L] Ô⇒ d(γ(u), p) ≤ r.
(2) A geodesic ray γ∶ [0,∞)→ X is (r,C,L)–contracting at θ–frequency if there

is an R0 > 0 such that any initial segment of γ of length at least R0 (i.e.
the segment γ[0, t] for any t ≥ R0) is (r,C,L)–contracting at θ–frequency.

(3) A geodesic ray γ∶ [0,∞)→ X is (r,C)–regularly contracting if τ is (r,C,L)–
contracting at θ–frequency for each L > 0 and θ ∈ (0,1].

A bi-infinite geodesic γ is regularly contracting if the rays t → γ(t) and
t→ γ(−t) are both regularly contracting.

Let us note the following connection with convergence boundary.
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Lemma 2.17. Let (X, ∂X) be a convergence compactification. Then a (r,C,L)–
contracting geodesic ray γ at θ–frequency accumulates into a unique [⋅]–class de-
noted by [γ+] in [∂X].

Proof. Let γ be an (r,C,L)–contracting geodesic ray at θ–frequency, where pn is
a sequence of the C–contracting geodesic segments satisfying (8). Up to taking
subsegment of length L, we may assume that pn is escaping.

Apply Definition 2.14(B) to the sequence of (C + 1)-contracting quasi-geodesics
Nr(pn). We thus obtain a unique [⋅]–class in ∂X, denoted by [γ+], and that
Ωo(Nr(pn)) accumulates to [γ+]. In particular, any sequence of points on γ are
eventually contained in Ωo(Nr(pn)), so tend to [γ+]. The proof is complete. □

As fore-mentioned, regularly contracting rays are the set of κ–contracting rays.

Theorem 2.18. [7] If τ is regularly contracting, then it is κ–contracting for some
sublinear function κ. In particular, it is also κ–Morse.

Let us equip the space X of interest with a convergence boundary ∂X. A universal
choice is to consider the horofunction boundary endowed with finite or sublinear
difference partition. However, the discussion in what follows equally works for any
convergence boundary, e.g. in Examples 2.5.

By Lemma 2.17, let FC(θ, r,C,L) be the set of all [⋅]s–classes [ξ] ∈ [∂X] so that
some geodesic ray γ in X starting at o and ending at [ξ] is (r,C,L)–contracting at
θ–frequency.

Accordingly, let RC(r,C) be the set of all [⋅]–classes [ξ] ∈ [∂X] so that some
geodesic ray γ in X starting at o and ending at [ξ]s is (r,C)–regular contracting.

Corollary 2.19. For any r,C > 0, the following holds

RC(r,C) = ⋂
L∈N

⎡⎢⎢⎢⎢⎣
⋂

θ∈(0,1]∩Q

FC(θ, r,C,L)
⎤⎥⎥⎥⎥⎦
.

where Q denotes the set of rational numbers.

2.7. Statistically convex-cocompact actions. In this subsection, we first recall
a class of statistically convex-cocompact actions introduced in [18].

Consider the ball of radius n centered at o ∈ X:

(9) N(o, n) = {v ∈ Go ∶ d(o, v) ≤ n}
Fix ∆ ≥ 1. Consider the annulus of radius n centered at o ∈ X:

(10) A(o, n,∆) = {v ∈ Go ∶ ∣d(o, v) − n∣ ≤∆}
Let Γ be a subset of G. The critical exponent of Γ is defined as

ωΓ = lim sup
n→∞

log ♯(N(o, n) ∩ Γo)
n

.

Given constants 0 ≤M1 ≤M2, let OM1,M2 be the set of element g ∈ G such that
there exists some geodesic γ between NM2(o) and NM2(go) with the property that
the interior of γ lies outside NM1(Γo).

Definition 2.20 (SCC action). If there exist positive constants M1,M2 > 0 such
that ωOM1,M2

< ωG < ∞, then the proper action of G on X is called statistically

convex-cocompact (SCC).
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NM1(Go)

B(o,M2)

o

B(go,M2)

go

γ ∩NM1(Go) = ∅

Figure 4. Illustration of OM1,M2 .

Remark. The idea to define the set OM1,M2 is to look at the action of the fun-
damental group of a finite volume negatively curved Hadamard manifold on its
universal cover. It is then easy to see that for appropriate constants M1,M2 > 0,
the set OM1,M2 coincides with the union of the orbits of cusp subgroups up to a
finite Hausdorff distance. The assumption in SCC actions was called the parabolic
gap condition by Dal’bo, Otal and Peigné in [6].

When the SCC action contains a contracting element, the definition is indepen-
dent of the basepoint (see [18, Lemma 6.2]).

A key notion in studying growth gaps is that of a barrier-free element introduced
in [18].

Definition 2.21. Fix constants r,M > 0.
(1) Given r > 0 and f ∈ G, we say that a geodesic γ contains an (r, f)–barrier

if there exists an element t ∈ G so that

(11) max{d(t ⋅ o, γ), d(t ⋅ fo, γ)} ≤ r.
If no such t ∈ G exists so that (11) holds, then γ is called (r, f)–barrier-free.

(2) An element g ∈ G is (r,M, f)–barrier-free if there exists an (r, f)–barrier-
free geodesic between NM(o) and NM(go).

We have chosen two parameters M1,M2 so that the definition of a statistically
convex-cocompact action is flexible and easy to verify. It is enough to take M1 =
M2 =M in our use. Henceforth, we set OM ∶= OM,M for ease of notation.

Given r,M > 0 and any f ∈ G, let Vr,M,f be the collection of all (r,M, f)–barrier-
free elements in G. The following results will be crucially used in next sections.

Proposition 2.22. [18, Theorems B & C] If G admits a SCC action on a proper
geodesic space (X, d) with a contracting element, then

(1) G has purely exponential growth.
(2) Let M0 be the constant in the definition of SCC action, then for any M >

M0, there exists r = r(M) > 0 such that Vr,M,f is exponentially negligible
for any f ∈ G.

3. Conformal density on convergence boundary

Consider a proper action G ↷ X with a contracting element, endowed with a
convergence compactification X = X ∪ ∂X. This section recalls the general setup
of quasi-conformal density supported on ∂X, and explains Patterson’s famous con-
struction of such density from the proper action G↷ X.
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3.1. Patterson-Sullivan measures on convergence boundary. Let M+(X)
be the set of finite positive Borel measures on X ∶= ∂X ∪ X, on which G acts by
push-forward:

g⋆µ(A) = µ(g−1A)
for any Borel set A. Let C be the (non-empty) set of non-pinched points in ∂X in
Definition 2.14(C).

Definition 3.1. Let ω ∈ [0,∞[. The following map

µ ∶ XÐ→M+(X)
xz→µx

is called a ω–dimensional G–quasi-equivariant quasi-conformal density if for any
g, h ∈ G and any x ∈ X, we have

µy − a.e. ξ ∈ ∂X ∶ dg⋆µx

dµx
(ξ) ∈ [ 1

λ
,λ],(12)

µy − a.e. ξ ∈ C ∶ 1

λ
e−ωBξ(x,y) ≤ dµx

dµy
(ξ) ≤ λe−ωBξ(x,y)(13)

for a universal constant λ ≥ 1. We normalize µo to be a probability measure: its
mass ∥µo∥ = µo(X) = 1.

We say that {µx ∶ x ∈ X} is non-trivial if µx is supported on C.

If λ = 1 for (12), the map µ ∶ X →M+(X) is G–equivariant, that is, µgx = g⋆µx;
equivalently, µgx(gA) = µx(A). If both λ = 1, we call µ a conformal density.

Patterson-Sullivan measures. Choose a basepoint o ∈ X. The Poincaré series
for the action of G↷ X

PG(s, x, y) = ∑
g∈G

e−sd(x,gy), s ≥ 0

diverges at 0 ≤ s < ωG and converges at s > ωG. The action of G on X is called
divergent if PG(s, x, y) diverges at the critical exponent ωG. Otherwise, G is called
convergent. Recall that [ΛGo] is the limit set for the action G ↷ X, i.e. the set of
accumulation points of a G-orbit, up to taking [⋅]-closure.

We start to construct a family of measures {µs,y
x }x∈X supported on Gy for any

given s > ωG and y ∈ X. Assume that PG(s, x, y) is divergent at s = ωG. Set

(14) µs,y
x = 1

PG(s, o, y)
∑
g∈G

e−sd(x,gy) ⋅Dirac(gy),

where s > ωG and x ∈ X. Note that µs,y
o is a probability measure supported on

Gy. If PG(s, x, y) is convergent at s = ωG, the Poincaré series in (14) needs to be
replaced by a modified series as in [11].

Fix y ∈ X. Choose si → ωG such that µsi,y
x are convergent in M+(ΛGo).

The Patterson-Sullivan measures µy
x = limµsi,y

v are the limit measures. Note that
µo(ΛGo) = 1. In what follows, we usually write µx = µo

x for x ∈ X.

Theorem 3.2. Suppose that G acts properly on a proper geodesic space X compact-
ified with horofunction boundary ∂hX. Then the family {µx ∶ x ∈ X} of Patterson-
Sullivan measures is a ωG-dimensional G-equivariant conformal density supported
on [ΛGo].
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In the sequel, we write PS-measures as shorthand for Patterson-Sullivan mea-
sures.

3.2. Shadow Lemma. In what follows, we make the standing assumption:

Convention 3.3. Let F be a set of three (mutually) independent contracting ele-
ments fi (i = 1,2,3), which form a contracting system

(15) F = {g ⋅Ax(fi) ∶ g ∈ G}
where the axis Ax(fi) defined in (1) depending on the choice of a basepoint o ∈ X
is C–contracting for some C > 0.

We may often assume d(o, fo) is large as possible, by taking sufficiently high
power of f ∈ F . The contracting constant C is not effected.

Let r > 0 and x, y ∈ X. First of all, define the usual cone and shadow:

Ωx(y, r) ∶= {z ∈ X ∶ ∃[x, z] ∩B(y, r) ≠ ∅}
and Πx(y, r) ⊆ ∂X be the topological closure in ∂X of Ωx(y, r).

The partial shadows ΠF
o (go, r) and cones ΩF

o (go, r) given in Definition 3.4 de-
pends on the choice of a contracting system F as in (15). Without index F ,
Πo(go, r) denotes the usual shadow.

Definition 3.4 (Partial cone and shadow). For x ∈ X, y ∈ Go, the (r,F )–cone
ΩF

x (y, r) is the set of elements z ∈ X such that y is an (r,F )–barrier for some
geodesic [x, z].

The (r,F )–shadow ΠF
x (y, r) ⊆ ∂X is the topological closure in ∂X of the cone

ΩF
x (y, r).

The key fact in the theory of conformal density is the Sullivan’s shadow lemma.

Lemma 3.5. [21, Lemma 6.3] Let {µx}x∈X be a nontrivial ω–dimensional G–
equivariant conformal density for some ω > 0 (i.e. supported on the set C ⊆ ∂X
of non-pinched points). Then there exist r0, L0 > 0 with the following property.

Assume that d(o, fo) > L0 for each f ∈ F . For given r ≥ r0, there exist C0 =
C0(F ),C1 = C1(F, r) such that

C0e
−ω⋅d(o,go) ≤ µo(ΠF

o (go, r)) ≤ µo(Πo(go, r)) ≤ C1e
−ω⋅d(o,go)

for any go ∈ Go.

As a corollary, we obtain a lower bound on the dimension of a conformal density.

Lemma 3.6. [21, Prop. 6.6] Under the assumption of Lemma 3.5, we have ω ≥ ωG.
Moreover, ωG can be realized as stated in Theorem 3.2.

3.3. Conical points. We give the definition of a conical point relative to the above
C–contracting system F in (3.3).

Definition 3.7. A point ξ ∈ ∂X is called (r,F )–conical if for some x ∈ Go, the
point ξ lies in infinitely many (r,F )–shadows ΠF

x (yn, r) for yn ∈ Go. We denote by
ΛF
r (Go) the set of (r,F )–conical points.

The following useful property [21, Lemma 4.4] resembles the usual definition of
conical points in Kleinian groups.
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gno gnfno

gnAx(fn)

o ΠF
o (gno, r) ∋ ξ

≤ r ≤ r

Figure 5. Conical points

Lemma 3.8. Let ξ ∈ ΛF
r (Go). Then there exists r̂ > 0 with the following property.

For any basepoint o ∈ X there exists a geodesic ray γ starting at o ending at [ξ] with
infinitely many (r̂, F )-barriers. That is,

● there exist gno ∈ G and fn ∈ F so that d(gno, γ), d(gnfno, γ) ≤ r̂.

Combined with Lemma 2.4, we obtain the following corollary.

Lemma 3.9. The sublinear difference relation restricted on the set of conical points
coincides with finite difference relation.

At last, we recall the following fact saying that conical points are generic for
divergence type action. It is a part of the Hopf-Tsuji-Sullivan dichotomy [21, The-
orem 1.10], where the converse (easier direction) is also true.

Lemma 3.10. If G ↷ X is of divergence type, then µo charges full measure on
[ΛF

r (Go)] and every [ξ]–class is µo–null.

4. Genericity of sublinearly Morse directions

This section is devoted to the proof of Theorem 4.1, recalled as follows.

Theorem 4.1. Let G ↷ X be a non-elementary SCC action with a contracting
element, equipped with a convergence boundary ∂X. Let {µx}x∈X be a ω–dimensional
G–quasi-equivariant, quasi-conformal density for some ω > 0, supported on the
subset of non-pinched points C ⊆ ∂X. Then the set of regularly contracting rays has
µo–full measure.

4.1. Growth tightness of elements without frequent barriers. Let γ be a
geodesic segment. For any θ ∈ [0,1], a θ–segment of γ means a connected and
open subsegment of γ with length θℓ(γ). Recall that if γ has (r, f)–barriers, by the
definition 2.21, there exists t ∈ G so that

to, tfo ∈ Nr(γ).
Recall from Convention 3.3 that F ⊆ G is a set of three independent contracting

elements, so that C > 0 is the common contracting constant for each f ∈ F . That is,
the axes Ax(f) = E(f) ⋅o is a C–contracting quasi-geodesic. For simplicity, we also
assume that any geodesic segment with two endpoints in Ax(f) is C–contracting
(by Lemma 2.2(2)(3)).

Definition 4.2. Fix θ ∈ (0,1], r > 0 and f ∈ G. We say that a geodesic γ contains
(r, f)–barriers at θ–frequency if for every θ–segment of γ has (r, f)–barriers.

An element g ∈ G has (r, f)–barriers at θ–frequency if there exists a geodesic γ
between B(o,M) and B(go,M) such that γ has (r, f)–barriers at θ–frequency.
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Fix any θ ∈ (0,1]. Form now on,

Convention 4.3. we fix a constant r ≥ C satisfy Proposition 2.22 and Lemma 3.5.

We need the following two elementary lemmas.

Lemma 4.4. Fix M > 0. There exist r̂ = r̂(C, r) and L1 = L1(C,M) > 0 with the
following property. Choose h ∈ E(f) so that d(o, ho) > L1. Let α,β be two geodesics
from B(o,M) to B(go,M). If α contains a θ–segment with (r, h)–barriers, then β
contains some θ–segment with (r̂, h)–barriers.
Proof. Let p be a θ–segment of α with an (r, h)–barrier. That is, d(to, p), d(tho, p) ≤
r for some t ∈ G. Let u, v be the entry and exit points of α ∩Nr(tAx(f)), so [u, v]
contains this (r, f)–barrier to and

d(u, v) ≥ d(o, fo) − 2r ≥ L1 − 2r.
As the shortest projection map to tAx(f) is coarsely 1–Lipschitz by Lemma 2.2(4),
B(o,M) and B(go,M) projects to a bounded set in tAx(f) of diameter B depend-
ing on M and C. If β is disjoint with Nr(tAx(f)) where r ≥ C, we project β to
tAx(f) with diameter at most C, yielding that d(u, v) ≤ 2B +C. If we choose

L1 ≫ 2B +C + 2r
we would obtain a contradiction, whence β has to intersect Nr(tAx(f)).

Let x and y be the entry and exit points of β in Nr(tAx(f)). Arguing with
a similar projection argument, we see that x, y are within D distance to u and v
respectively, where D = 2B + 2C. By Lemma 2.2, [x, y] is Ĉ–contracting and the

quasi-convexity implies [u, v] is r′–close to [x, y] for some r′ = r′(Ĉ). Thus,
d(to, [u, v]), d(tfo, [u, v]) ≤ r̂ ∶= r + r′.

Extending [u, v] to be a θ–segment of β, we proved that β contains (r̂, h)–barriers
in a θ–segment. □

The following lemma will be used in the proof of Lemma 4.12. Roughly speaking,
it says that elements in OM1,M2 have no (r, f)–barrier.
Lemma 4.5. Fix any M ≥ C. Let γ be a geodesic with two endpoints in NM(Go)
and α be a component in the complement γ∖NM(Go). Then there exists a constant
L2 > 0 depending only on r,C so that α∩Nr(hAx(f)) has diameter at most L2 for
any h ∈ G.

Proof. Let x and y be the entry and exit points of α in Nr(hAx(f)) respec-
tively. If x′ and y′ are the corresponding projection points to hAx(f), we have
d(x,x′), d(y, y′) ≤ r. By assumption, α ∩ NM(Go) = ∅. Noting C ≤ M and
Ax(f) ⊆ Go, we have α ∩NC(hAx(f)) = ∅. The C–contracting property implies
the projection of α to hAx(f) has diameter at most C. Consequently, we obtain
d(x′, y′) ≤ C and thus d(x, y) ≤ d(x′, y′)+2r ≤ C+2r. Setting L0 = C+2r0 completes
the proof. □

Convention 4.6. We fix the constants r̂ satisfying Lemma 4.4 and Lemma 4.5.
We choose M ≥max{r̂, C} as in the definition of SCC actions (2.20).

Fix an element h ∈ E(f) where f ∈ F is given as in Convention (3.3).
Let W(θ, r, h) denote the set of elements g in G having no (r, h)–barriers at

θ–frequency: for any geodesic γ from B(o,M) to B(go,M), γ contains some θ–
segment without (r, h)–barriers.
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Lemma 4.7. Let G ↷ X be a non-elementary action with a contracting element.
Assume that G ↷ X has purely exponential growth. Then the set W(θ, r, h) is
growth negligible.

In addition, if G↷ X is a SCC action, then the set W(θ, r, h) is growth tight.

Proof. For simplicity, write W ∶= W(θ, r, h) in this proof. Given g ∈ W , let γ be
a fixed geodesic from B(o,M) to B(go,M) so that some θ–segment of γ, denoted
by α, is (r, h)–barrier-free. That is to say, ℓ(α) ≥ θℓ(γ) and α contains no (r, h)–
barrier.

We may assume α is a maximal open segment with this property. We must have
the two endpoints of α lies in Nr(Go), otherwise we can extend α until reaching
Nr(Go). Thus, there exist g1, g2 ∈ G such that

d(g1o,α−), d(g2o,α+) ≤ r,
in particular, ĝ = g−11 g2 is (r, h)–barrier-free by definition. As a consequence, this
implies that any g ∈W can be written as a product of three elements g = g1 ⋅ĝ ⋅(g−12 g)
so that

∣d(o, go) − d(o, g1o) − d(o, g2o) − d(o, ĝo)∣ ≤ 4M.

By Proposition 2.22, the set of elements ĝ ∈ Vr,M,h is growth negligible: as n→∞,

♯N(o, n) ∩ Vr,M,h

♯N(o, n)
→ 0.

If the action is SCC, then Vr,M,h is growth tight: for some ϵ > 0,
♯N(o, n) ∩ Vr,M,h

♯N(o, n)
≤ e−ϵn.

Moreover, the element ĝ in the above product takes a definite proportion:

d(o, ĝo) ≥ ℓ(α) − 2M ≥ θd(o, go) − 2M.

Since G↷ X has purely exponential growth, we have ♯N(o, n) ≍ enωG . By a similar
argument as in [8, Lemma 3.9], a straightforward computation shows that W is
growth tight if the action is SCC, and is growth negligible in general. The lemma
is then proved. □

Corollary 4.8. If the action is SCC, then the Poincaré series associated to W ∶=
W(θ, r, h) is convergent at s = ωG. Namely,

∑
g∈W

e−ωGd(o,go) <∞.

Remark. We expect this same conclusion holds for proper action with purely expo-
nential growth.

Let NFB(θ, r, h) denote the set of limit points ξ ∈ ∂X that is contained in infin-
itely many shadows at elements in W(θ, r, h). Precisely, denoting W ∶=W(θ, r, h),
NFB(θ, r, h) is the limit supper of the following sequence of sets

⋃
v∈A(o,n,∆)∩W

ΠF
o (v, r)

where A(o, n,∆) is defined in (10), as n→∞. Hence, the sequence

Λn ∶= ⋃
k≥n

⎡⎢⎢⎢⎢⎣
⋃

v∈A(o,k,∆)∩W
ΠF

o (v, r)
⎤⎥⎥⎥⎥⎦
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tends to NFB(θ, r, h).
We clarify the set NFB(θ, r, h) with the following result, which shall not be used

in other places.

Lemma 4.9. Let gn ∈W(θ, r, h) be a sequence of elements without (r, h)–barriers
at θ–frequency. Assume that ξ is contained in a sequence of shadows ΠF

o (yn, r)
where yn ∶= gno. Then there exists a geodesic ray γ starting at o and ending at [ξ]
such that γ contains no (r, h)–barriers at θ–frequency.

Proof. For ξ ∈ ΠF
o (yn, r), there exists zm ∈ ΩF

o (yn, r)→ ξ such that [o, zm] contains
a (r,F )–barrier at yn = gno. That is to say, for some f ′ ∈ F ,

d(gno, [o, zm]), d(gnf ′o, [o, zm]) ≤ r.
This inequality holds for any limit of [o, zm] by Ascoli-Arzela Lemma with respect to
the local uniform convergence topology. A Cantor diagonal argument then provides
a limiting geodesic ray γ, which has the above (r,F )–barrier at every yn. As [o, yn]
has no (r, f)–barriers at θ–frequency, any limit γ does so. It remains to note that γ
ends at a point in [ξ]. To see this, first note that any limit point η of yn lies in [ξ],
as the direct computation shows the difference bξ and bη is uniformly bounded using
the above inequality. As d(yn, γ) ≤ r, the same reasoning shows that the Buseman
function to γ has finite difference to bη. This then concludes the proof. □

4.2. Non-frequently contracting segments have non-frequent barriers. We
now relate the metric notion of frequently contracting segments (Def. 2.16) to the
analogous one, but involving a group action, with frequent barriers (Def. 4.2). The
title says the main result, Lemma 4.12, of this subsection. First of all, we state a
preparatory lemma.

Lemma 4.10. Let γ be a geodesic segment with (r, h)–barriers at θ–frequency for
some h ∈ E(f). Then γ is (r,C,L)–contracting at θ–frequency, where L = d(o, ho).

Proof. The proof follows by unravelling the definitions. By definition, if γ contains
an (r, h)–barrier, then γ contains a segment [o, ho] in the r–neighborhood of Ax(f),
which is C–contracting. □

Lemma 4.11. Let hn ∈ E(f) be a sequence of elements with d(o, hno) →∞. If γ
is a geodesic ray with (r, hn)–barriers at θ–frequency for any θ ∈ (0,1], then γ is
(r,C)–regular contracting.

Proof. As θ ∈ (0,1] is arbitrary and d(o, ho)→∞, it follows from Lemma 4.10 that
γ is (r,C)–frequently contracting. □

We now look at the set of (r,C,L)–contracting rays at θ–frequency. Precisely,
let FC(θ, r,C,L) consist of all [⋅]s–classes [ξ]s ∈ [∂X]s so that some geodesic ray γ
in X starting at o and ending at [ξ]s is (r,C,L)–contracting at θ–frequency.

The relation with the previously defined setNFB(θ, r, f) with no frequent (r, f)–
barriers is explained in the following lemma. This is crucial in the proof of Theorem
Theorem A later on.

Lemma 4.12. Assume that

● L is a constant bigger than max{L0, L1}, where L0 are given by Lemma 4.5
and L1 are given by Lemma 4.4.
● h ∈ E(f) is an element with d(o, ho) > 2L,
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Then the complementary set ΛF
r (Go)∖FC(θ, r̂,C,L) is contained in the set NFB(θ, r, h).

The relevance of f ∈ F to the constant C is that any segment in Nr(Ax(f)) is
assumed to be C–contracting. See Convention 3.3.

Proof. Let ξ ∈ [ΛF
r (Go)] be not contained in [FC(θ, r̂,C,L)]. By definition, there

exists a geodesic ray γ = [o, ξ] that is not (r,C,L)–contracting at θ–frequency. By
definition, there exist a sequence of positive numbers Rn → ∞ with the following
property :

(⊛)
γ[0,Rn] contains a θ-interval αn so that

no subsegment of αn with length L is r̂–close to a C-contracting segment.

By Lemma 4.10, γ[0,Rn] has no (r̂, h)–barriers at θ–frequency.
If the point γ[Rn] lies in the closed neighborhood NM(Go), there exists gn ∈

G such that d(gno, γ[Rn]) ≤ M . By Lemma 4.4, any geodesic from B(o,M) to
B(gno,M) has no (r, h)–barriers at θ–frequency. By definition, gn has no (r, h)–
barriers at θ–frequency, so gn ∈W(θ, r, h) by definition.

Otherwise, we have γ[Rn] lies outside NM(Go). The remainder of the proof is
then to find another time R′n so that γ[0,R′n] has the above property (⊛)(i.e. not
(r,C,L)–contracting at θ–frequency), and the new point γ[R′n] lies in NM(Go).
To that end, our discussion is divided into the following two cases. Write explicitly
αn ∶= γ[sn, tn] for some 0 ≤ sn < tn ≤ Rn.

Case 1. Assume that γ[0,Rn] contains a point γ[R′n] in NM(Go) for some time
tn ≤ R′n < Rn. As αn is contained in γ[0,R′n] and R′n ≤ Rn is an earlier time, the
segment γ[0,R′n] has the above property (⊛). Also, d(gno, γ[R′n]) ≤ M for some
gn ∈ G.

Case 2. After αn = γ[sn, tn], γ[0,Rn] contains no point in NM(Go). That is
to say, for any t ∈ [tn,Rn], we have d(γ[t],Go) >M . In this case, we shall extend
the segment γ[0,Rn] to a future time R′n ≥ Rn, which still has the above property
(⊛), so that d(gno, γ[R′n]) ≤M for some gn ∈ G. See Figure 6.

Indeed, let R′n > Rn be the least number so that γ[R′n] is contained in NM(Go).
The numberR′n <∞ exists, since γ ends at [⋅]s–class of a conical point ξ ∈ [ΛF

r (Go)],
which according to Lemma 3.8 intersects Nr̂(Go) in a unbounded diameter.

Let gn ∈ G satisfy d(gno, γ[R′n]) ≤M . We need to verify

Claim. gn has no (r, h)–barriers at θ–frequency.

Proof of the claim. The segment α′n ∶= γ[sn,R′n] is the union of αn and γ[tn,R′n].
As αn is a θ–interval of γ[0,Rn], it follows that α′n is a θ–interval of γ[0,R′n].

Now, assume by contradiction that gn has (r, f)–barriers at θ–frequency. By
definition, any geodesic (say γ[0,R′n]) between B(o,M) and B(gno,M) has (r, h)–
barriers at θ–frequency. In particular, the θ–interval α′n has (r, h)–barriers. Hence,
we have some g ∈ G so that go, gho lie in the r–neighborhood of α′n. That is,
α′n ∩Nr(gAx(f)) has diameter at least d(o, ho) > 2L.

As γ[tn,R′n] lies outside NM(Go), we obtain from Lemma 4.5 that γ[tn,R′n] ∩
Nr(gAx(f)) has diameter at most L0. Thus, αn ∩ Nr(gAx(f)) has diameter at
least 2L − L0 > L. By assumption, any segment with two endpoints in gAx(h)
is C–contracting, we see that αn contains a segment of length L, that is r–close
to a C–contracting segment. This is a contradiction with (⊛), so we proved that
gn ∈W(θ, r, h). □
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sn tn Rn

R′n

ℓ(αn) = θ ⋅Rn

ξ

NM(Go)
hno

o

α′n

Figure 6. Case (2) in the proof of Lemma 4.12

In summary, we produced a sequence of elements gn ∈W(θ, r, h) so that d(gno, γ) ≤
C. Hence, ξ lies in NFB(θ, r, h). The lemma is proved. □

In order to prove that FC(θ, r,C,L) is µo–full, we only need to prove that
NFB(θ, r, h) is µo–null.

Lemma 4.13. Assume that the action G ↷ X is SCC. Fix θ ∈ (0,1) and a con-
tracting element h ∈ E(f). Then the set NFB(θ, r, h) is µo–null.

Proof. In this proof, we write W ∶= W(θ, r, h) for simplicity. The following argu-
ment is standard, but we write it for the completeness.

By way of contradiction, assume that µo(NFB(θ, r, h)) > 0. By assumption,
µo(Λn) ≥ 1

2
µo(NFB) > 0 for all n ≫ 0. As W ⊆ G is growth tight and ω is the

critical exponent of G, the following Poincaré series associated with W

PW (ω, o, o) = ∑
g∈W

e−ωd(o,go)

is convergent. By Lemma 3.5, we obtain a uniform lower bound on the partial sum
of PW (ω, o, o) for any n≫ 0:

⋃
k≥n

⎡⎢⎢⎢⎢⎣
⋃

v∈A(o,k,∆)∩W
e−ωn

⎤⎥⎥⎥⎥⎦
≻ µo(Λn)

thus contradicting to the convergence of PW (ω, o, o). This shows that NFB is
µo–null. □

4.3. Completion of the proof of Theorem A. As shown in (2.19), the set of
regularly contracting rays RC(r,C) for given r,C > 0 is the countable intersection
of FC(θ, r,C,L) over rationals θ ∈ Q and integers L ∈ N.

According to Lemma 4.12, FC(θ, r,C,L) is contained in NFB(θ, r, h) for some
h ∈ E(f), so is µo–full for every L, θ by Lemma 4.13. Hence, the countable inter-
section RC(r,C) is µo–full.

By Theorem 2.18, RC(r,C) is a subset of the sublinearly Morse directions, thus
the set of sublinearly Morse directions is µo–full.
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